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Air bubbles released from an underwater nozzle emit an acoustical pulse which is of 
interest both for the study of bubble detachment and for elucidating the mechanism 
of sound generation by a newly formed bubble. In this paper we calculate 
theoretically the sequence of bubble shapes from a given nozzle and show that there 
is for each nozzle a bubble of maximum volume Vmax. Assuming that the bubble 
becomes detached at its ‘neck’, and that the volume of the detached bubble equals 
the volume V* of the undetached bubble above its ‘neck’, we determine for each 
nozzle diameter D an acoustic frequency f* corresponding to ‘slow ’ bubble release. 

Experiments show that the acoustic frequency, hence the bubble size, depends on 
the rate of air flow to the bubble, but for slow rates of flow the frequency f is very 
close to the theoretical frequency f*. 

High-speed photographs suggest that when the bubble pinches off, the limiting 
form of the surface is almost a cone. This is accounted for by assuming a line sink 
along the axis of symmetry. Immediately following pinch-off there is evidence of the 
formation of an axial jet going upwards into the bubble. This may play a part in 
stimulating the emission of sound. 

1. Introduction 
An apparently very simple source of underwater sound is the release of an air 

bubble from an underwater nozzle, as in the classical experiments of Minnaert (1933). 
While Minnaert used only his ear to determine the pitch of the sound, an 
instrumental record of the pressure together with a sequence of photographs was 
published by Strasberg (1966); see also Fitzpatrick & Straaberg (1967). Because of 
the controllable nature of the source, such data are of considerable interest for a 
discussion of the mechanics of sound generation by bubbles (Longuet-Higgins 
1989u, b, 1990a), whether they arise from waterfalls (Leighton & Walton 1987), 
breaking waves (Farmer & Vagle 1988), bubble splitting (Frizell & Arndt 1987), 
raindrops (Prosperetti, Crum & Pumphrey 1989) or other causes. 

Longuet-Higgins (1989u, b, 1 9 9 0 ~ )  suggested that the monopole emission of sound 
by shape oscillations in newly generated bubbles could make an appreciable 
contribution to the oceanic acoustical noise spectrum. The mechanism involves a 
damped ‘resonance ’ between the shape oscillations (at second order) and the radial 
‘breathing’ mode of the bubble. An attempt to test this idea by a laboratory 
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experiment was suggested by L. A. Crum and A. Prosperetti (personal communi- 
cation). They proposed measuring the sound from the bubbles released from an 
underwater nozzle, over a range of different ambient pressures. As we shall see, 
however, this experiment needs to be conducted with due regard to the rate of air 
flow into the bubble, and other factors. 

The sound emitted from bubbles entrained by falling drops has been the subject 
of recent studies by Prosperetti et al. (1989), Longuet-Higgins (1990b) and Oguz & 
Prosperetti (1991). Although here the problem is complicated by the presence of a 
free surface nearby, the situation may not be unlike the problem of bubble 
detachment from a nozzle. The same remark applies to the sound from bubbles 
trapped by capillary-gravity waves on water (see Longuet-Higgins 1990 a). 

The forms of bubbles emerging from an underwater nozzle are similar in principle 
to those of drops hanging from a vertical tube, in that both are governed by the 
known equations for a meniscus (see Bashforth & Adams 1883; Padday 1971). Only 
the contact angles are different in the two cases, leading generally to different 
solutions. With a theoretically thin-walled tube or nozzle, however, the solutions 
become identical. The stability of pendant drops has been studied theoretically by 
Padday & Pitt (1972); see also Michael (1981). It appears that in the simplest 
situation when the volume of the bubble (as opposed to the air pressure) is controlled 
experimentally, the question of stability is relatively straightforward. Nevertheless 
the present authors have not been able to find a satisfactory account of the subject 
relating to bubbles from a nozzle, even in this simplest case. 

Another application should be mentioned here. In studying the behaviour of air 
bubbles released from a nozzle, it is desirable to have some simple and accurate 
method for sizing the bubbles. For this purpose, the frequency of the acoustical pulse 
emitted by the bubble, which is simply related to its radius, may be the most 
accurate indicator of its size, and more convenient than flash photography. 

In the present paper we shall solve the problem of the growth of air bubbles from 
an underwater nozzle from first principles, but treating only the case when the air 
flow is small, so that the situation is quasi-steady. For each nozzle-size we find a 
bubble shape of maximum volume, which cannot be exceeded while maintaining 
stability. We assume that the bubble breaks off at  this point, at the narrowest point 
of its profile. This gives a theoretical air volume and bubble radius, hence an 
acoustical frequency (figure 15). It turns out that this accurately corresponds to a 
maximum acoustical frequency measured in our experiments on the gentle release of 
bubbles from an underwater nozzle (see $8). 

High-speed photographs of the bubble profiles (figure 19) confirm the sequence of 
theoretical bubble profiles up to the point of maximum volume. They also yield 
information on the subsequent velocity field, which will be of value in calculating 
theoretically the magnitude of the acoustical signal due to different mechanisms. 

2. Static meniscus 
Consider the static problem of an air bubble emerging from a vertical tube, as in 

figure 1, at a rate slow enough that the fluid velocities may be neglected. The free 
surface is then in equilibrium under the action of surface tension T and gravity g. If 
p denotes the density of the surrounding water we can choose units so that 
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FIGURE 1. Coordinates and axes for a bubble emerging from an underwater nozzle. 

This implies that the unit of length is 

(T/pg)i = 2.75 mm. (2.2) 

Choose coordinates as in figure 1 with the origin 0 at the highest point of the 
meniscus, the x-axis as the axis of symmetry, and the y-axis radially outwards. The 
pressure p in the fluid is given by 

P =Po+%,  

where po is the pressure at 0. The air pressure pB in the bubble is given by 

PB =p+(K1+K2), (2.4) 

where K~ and K~ are the principal curvatures of the surface. If 8 denotes the arclength 
from 0 to a point P on the surface, and if a denotes the angle made by the tangent 
at P with the horizontal, then we have 

da sin a 
K1 = -, K2 = -. 

ds Y 

K1+R, K2+- R 
1 1 

Note that as s --f 0, we have 

where R denotes the radius of curvature at 0. Clearly from (2.4) 

2 
P, = PO+R 

and from (2.3) to (2.7) we have in general 

-+-=-- da sina 2 
ds y R x’ 
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FIGURE 2(a,b) .  For caption see facing page. 
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-2 - 1  0 1 2 

FIQURE 2. Solutions of equations (2.8) and (2.9) representing bubble menisci. (a) R = 0.25, 
( b )  R = 0.50, (c) R = 0.75, (a?) R = 1.00. 
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with 

-2 - 1  0 1 2 

FIQURE 3. Family of solutions of equations (2.8) and (2.9), R = 0.25-0.75. 

x = l s i n a d s ,  y = l c o s a d s .  

These equations can be accurately integrated by noting that 

hence 

da 2 sin a 
X--, - - _- 

d s - R  Y 
(2.10) 

(2.11) 

and then using the numerical scheme described by Pitts (1974, equations 

Figure 2 ( a d )  shows some representative solutions, corresponding t o  R = 0.25, 
0.50, 0.75 and 1.0 respectively. The family of solutions, from R = 0.25 to 0.75 is 
shown in figure 3. We note that this type of presentation differs from the more usual 
one given for example by Padday (1971, figure 10) in which the curvature at x = 0 
is held constant and the parameter /? = pgR2/T is varied. In the present treatment 
the physical scale is held constant throughout. 

(A 11)-(A 15)). 

3. The case R 4 1 
For small values of R the effect of gravity is slight compared to that of surface 

tension. The profiles in figures 2 and 3 then resemble the surfaces of Delaunay (1841), 
of which some examples are shown in figure 4. These surfaces are by definition the 
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FIGURE 4. Delaunay surfaces: solutions of equation (3.1). (a) C = 0.50, ( b )  C = 0.65, 
(c) C = 0.80, (d) C = 0.95. 

periodic, axisymmetric surfaces having constant mean curvature. The axial sections 
are thus solutions of the equation 

da sina -+- = 2 c .  
ds Y 

In Cartesian coordinates the solutions can be expressed in terms of elliptic functions, 
and it is curious that each curve may be obtained as the locus of the focus of an ellipse 
that rolls without slipping along a straight line, the axis of symmetry (see also Eells 
1987). Clearly when the rolling ellipse is a circle, its focus traces out a straight line. 
On the other hand when the ellipse is very thin, with a focus near each end, the focus 
traces circles very nearly, aa in figure 4 ( d ) .  

Note that near the point of greatest distance y from the axis of symmetry the two 
principal curvatures K~ and K~ are of the same sign and almost equal to C. Near the 
point of minimum y, however, K~ and K~ are of opposite sign and both large ; only their 
sum equals 2C. 

Without gravity, there is no characteristic lengthscale. Physically the surfaces are 
unstable unless anchored by two parallel rings separated by not more than one 
wavelength (Plateau 1873). 

As seen in figure 2(a) ,  the addition of a small axial component of gravity causes 
the surfaces to develop a sequence of widening ‘necks’. The width d of the first neck 
is easily calculated. For, since the surface above the neck is almost a sphere of radius 
R, its volume is &.R3. Consider the equilibrium of the part of the surface above the 
neck (as argued by Blanchard & Syzdek (1977) who, however, consider only small 
bubbles). The buoyancy of the sphere must be balanced by the surface tension at  the 
neck, which gives a force xd, in dimensionless units. Hence 

d = A 8 3 .  (3.2) 

The argument can obviously be generalized to show that the diameter of the nth 
‘neck ’ in the series is 3z,R3, so long as the n successive segments of the surface remain 
nearly spherical. 

For larger values of R the surfaces in figure 2 broaden out more rapidly, and the 
number of minimum values of y for each surface is less. At the critical value 

R = R~~~~ = 0.7788 (3.3) 
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the surface loses its last minimum, i.e. the tangent at  the point of inflection of the 
profile becomes vertical. The corresponding value of the radial distance y is 

ycrit = 0.897. (3.4) 

4. Sequence of bubble shapes 
Consider a bubble emerging from a thin-walled nozzle as in figure I .  The effect of 

assuming the wall to be thin is that the bubble attachment can occur at any angle 
a to the rim of the nozzle. To determine the sequence of shapes corresponding to a 
nozzle of given diameter D we have to take the intersection of the lines y = f0.5D 
with the family of profiles in figure 3. A t  a given R the line y = 0.50 will intersect the 
profile at one or more points with coordinates (xm, 0.50),  say, numbered in order of 
increasing 2,. 

For illustration consider the sequence of bubble shapes in a typical case D = 1.0 
(figure 5) .  As R decreases from 1.0 to a little less than 0.5, the volume steadily 
increases until the tangent at the nozzle rim becomes vertical. Near this point there 
is a sharp increase in volume with little accompanying change in R.  The solution 
switches from x1 to x2, and V increases steadily as x2 and R increase. This continues 
until R = 0.655 when the tangent at the neck again becomes vertical, and there is 
another sharp increase in V ;  x2 then changes to x3, and R decreases. Shortly 
afterwards, at R = 0.652, the volume attains a maximum. If further air is forced in, 
the bubble must break off. 

(4.1) 
The volume 
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aa a function 

FIGURE 7. The sequence of bubble profiles corresponding to m = 3, when D = 1.0. 



374 M. 8. Longuet-Higgins, B. R. Keman and K .  Lunde 

6 

P.E. 4 

2 

0 1 2 
V 

3 

FIGURE 8. Potential energy corresponding to bubble profiles in sequences m = 1, 2 and 3, 
when D = 1.0. 

of air contained in the bubble above the level of the nozzle rim is plotted as a function 
of R in figure 6. The different branches x, are identified. Physically the parameter 
moves along the branch m = 1 until the point A. Then, if the bubble shape evolves 
continuously, it  moves up the branch m = 2 as far as B, where it passes over to 
m = 3. 

In figure 7 we show the profiles of the bubbles along the branch m = 3. Each of 
these has a narrow neck, but with a volume V less than the maximum. Physically it 
is conceivable that with the aid of a small perturbation a bubble might jump from 
the branch m = 2 to the branch m = 3. However, a calculation of the potential 
energy (surface tension plus gravitational) of the bubbles shows that, at equal 
volume V, the potential energy of bubbles on branch m = 3 is greater (see figure 8). 
Hence some energy would need to be supplied. 

If we follow the behaviour of V to the left of the line AC in figure 6 we find a 
repetition of the previous behaviour. However, the points in this region correspond 
to profiles having more than one vertical tangent. It seems unlikely that these 
represent stable configurations, and they will not be discussed further. 

5. Limiting bubbles 
The family of curves of V versus R for different nozzle diameters is shown in figure 

9. It will be seen that when 
(5-1) 

the curves have two critical tangents, as already discussed, but when B > 2yCrit there 

D < 2y,,,, = 1.794 
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FIQURE 9. The volume V enclosed above the nozzle rim ag a function of R for 
D = 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. 

f 
D v- R V* a* (kHz) 

0.2 0.530 0.460 0.530 0.502 2.490 
0.4 0.991 0.540 0.987 0.618 2.023 
0.6 1.444 0.589 1.437 0.700 1.786 
0.8 1.905 0.624 1.867 0.764 1.636 
1.0 2.387 0.652 2.270 0.815 1.534 
1.2 2.897 0.677 2.650 0.858 1.457 
1.4 3.439 0.698 2.954 0.890 1.404 
1.5 3.723 0.709 3.096 0.904 1.372 
1.6 4.014 0.718 3.200 0.914 1.368 
1.7 4.314 0.729 3.305 0.924 1.342 
1.8 4.624 0.739 3.376 0.931 1.343 
1.9 4.939 0.746 3.405 0.933 1.340 
2.0 5.260 0.761 3.395 0.932 1.331 
2.1 5.598 0.767 3.357 0.929 1.346 
2.2 5.938 0.776 3.107 0.905 1.381 
2.3 6.283 0.788 
2.4 6.642 0.789 

TABLE 1. The maximum volume V,, of a bubble attechyd to a nozzle of diameter D. 
The unit of length is (T/pg)r 
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FIGURE 10. Limiting bubble profiles for nozzles of diameter D ranging from 0.2 to 2.0. 

are none. In all cases, however, there is a maximum volume V,,, corresponding to 
a nozzle of given diameter. Some representative values are given in table 1, together 
with the corresponding values of R. 

The family of limiting bubble shapes is shown in figure 10 over the range 
0.2 < D < 2.0. When D < 0.1 the shape is almost a sphere with radius R. Since D 
then differs little from the neck width d,  one can find R from (3.2), that is 

R = (iD);. (5.2) 

6. Bubble release 
The stability of a bubble attached to a nozzle has been discussed by Pitts (1974) 

under conditions of prescribed volume and of prescribed air pressure. We shall 
consider only the case of prescribed volume. We also assume that the rate a t  which 
air is passed into the bubble is small enough that the bubble can be considered to be 
in a static state, until the onset of instability. 

If the bubble contains the maximum amount of air for the nozzle diameter, and 
further air is forced or allowed to enter, then it has no choice but to break off. 
Supposing the bubble has a thin ‘neck’ it is reasonable to suppose that the water 
surrounding the neck moves inwards towards the axis of symmetry and that the 
bubble thus breaks in a symmetrical fashion. What specially concerns us, for the 
emission of sound, is the total volume of the bubble after its release. We shall suppose 
that the total air mass M corresponds to the volume V* of air above the level of the 
‘neck’, where the diameter is equal to d. Generally V* is less than V,,, as we have 
seen. In figure 11, the parameter R is plotted against D, using the data in table 1. 
(The broken line shows the asymptote (5.2).) Clearly R increases monotonically 
with D. 
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FIGURE 12. The dimensionless volume V* contained above the ‘neck’ of a bubble, 
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In  figure 12, on the other hand, V* is shown as a function of R. Clearly V* is not 
a monotonic function of R since although the family of curves in figure 10 enclose one 
another, as R approaches Rcrit (equation (3.3)) the neck of the curve moves rapidly 
upwards, so tending to reduce V*. Indeed V* must merge smoothly with c, the 
volume above the widest point of the profile, V: is shown by the broken curve in 
figure 12. 
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FIQURE 13. The notional radius a* of limiting bubbles as a function of the nozzle diameter D. 

Combining figures 11 and 12 we show in figure 13 the ‘notional’ radius a* of the 
detached bubble, calculated from 

a* = (3V*/4x)f, (6.1) 

as a function of the nozzle diameter D. We note that this is a non-monotonic function 
of D .  In fact V* has a maximum a t  about R = 0.754 where V* = 3.416, a* = 0.9031 
and D = 1.98. The neck of the bubble finally disappears when R = 0.7788, V* = 
2.875, a* = 0.8284 and D = 2.25. 

7. Frequency of oscillation 
The actual radius a’ of a bubble immediately after its release will differ from the 

‘notional’ radius a* by an amount depending upon the environmental conditions. 
Let pA denote the pressure in the water at a point immediately above the highest 
point of the bubble (see figure 14). Just before its release the pressure pB in the bubble 

(7.1) 
is then given by 

Denoting by primes the corresponding quantities for the equilibrium state of the 
bubble immediately after its release, we have 

PB = PA + 2T/R. 

p;3 = p i  + 2T/a‘. 

pblp, = (V*/V‘)  = ( a * / ~ ’ ) ~ 7 ,  

(7.2) 

(7.3) 

where y lies between 1 and 1.4, depending on the bubble size. From the above 

We may assume that p i  = pA. Also, from the gas law we have 

relations it fo llows that 
- 

a* \1+2T/ (7.4) 

Now, for air bubbles of radius greater than 0.1 mm in water at atmospheric pressure, 
2Tlpa is less than 1 %. So from (7.4) we have 

where e = (2T/3ypa*) is a t  most 0.003. Thus, to lowest order in 8, 

(7.5) 

a’ - _  - 1+6,  
a* 
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(4 (b) 
FIQURE 14. Schematic drawing of a bubble (a) before and ( b )  after detachment. 

I I I I I  1 1 I I I l l  

. D(mm) __ 
FIGURE 15. The maximum acoustical frequency f of bubble oscillations ria a function of nozzle 
diameter D.  Solid line: from equation (7.11). Broken line: asymptote (7.12). Plotted points: 
experimental values ($8) .  

0.3 0.5 1 2 4 8 

where &=c($-l) .  (7.7) 

The ratio a*/R is a measure of the distortion of the bubble, and is of order unity. 
Hence S is a small quantity which we shall neglect. 

The frequency f of the linear, radial oscillations of a bubble of radius a is given by 

(Plesset & Prosperetti 1977). Since the ratio of the second term on the right to  the 
first term is s/3y, the second term is negligible. For a similar reason p ,  can be 
replaced by p,, which we take to be the static pressure at a depth of 1 m below a 
water surface at sea level: 

Taking y = 1.4 this yields 

p ,  = 1.11 x lo6 dyne/cm2. (7.9) 

344 
f=-Hz 

a 
(7.10) 

13 FLM 230 
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Nozzle ID OD fmrm 

number (mm) (mm) Cross-section (kHz) 
1 4.004 4.978 Sharp 1.368 
2 2.286 2.912 Sharp 1.680 

4 0.686 1.092 Square 2.310 
5 0.508 0.813 Square 2.420 
6 0.330 0.635 Square 2.880 

3 1.168 1.651 Sharp 1.944 

TABLE 2. Dimensions of underwater nozzles, and the observed maximum bubble frequencies 

provided a is in cm. If a is in the dimensionless units of figure 13 (1 - 0.275 cm) then 

f-7 1'250 kHz. (7.11) 

This quantity is shown in the last column of table 1, and is plott'ed in figure 15, as 
a function of the nozzle diameter D .  

At small bubble radii, (3.2) yields the asymptote 

f ED-$ (7.12) 

The frequency has a minimum value of 1.38 kHz when D = 5.45 mm, and a cutoff 
shown by the broken line in figure 15. 

value 1.51 kHz when D = 6.19 mm. 

8. Comparison with observation 
A series of controlled experiments, in which air bubbles were released from a 

variety of nozzles at a depth of about 72 cm below a free water surface, were carried 
out in the Department of Applied Mathematics and Theoretical Physics at Cambridge 
University. A full account of the experimental arrangement is given by Lunde 

The nozzles were placed near the bottom of a tank with horizontal cross-section 
10 cm x 10 cm, the thickness of the Perspex wall being 0.95 cm (i in.). The internal 
diameters of the nozzles ranged from 0.330 mm to 4.004 mm (see table 2). The source 
of air to  the nozzles was a reservoir of compressed air, released through a micrometer- 
controlled valve, which enabled the rate of bubble production to be varied from 0.01 
to 5 bubbles per second. 

To ensure repeatability of the experiments the nozzle orifices were carefully 
prepared. The three largest nozzles in table 2 were shaped so that the inner edge was 
sharp, as seen in figure 19. The three smallest nozzles were square-topped. 

A hydrophone was introduced to record the acoustical signal emitted on the release 
of each bubble. A typical pulse is shown in figure 16(a). It has the familiar form of 
a damped sine-wave (cf. Strasberg 1956). (The signal was digitized a t  132 kHz and 
band-passed between 0.7 and 7.0 kHz.) 

Figure 16(b) shows a frequency analysis of figure 16(a). There is clearly a well- 
defined peak frequency, which we can take as representative of the pulse. 

As expected from Clift, Grace & Weber (1978) two important controlling factors 
were the rate of air flow to the bubble and whether the system operated in a pressure- 

(1991). 
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FIGURE 16. Acoustical pulse from a bubble released from Nozzle 6 at low air-flow rate. 
(a) Time variation of the acoustical pressure, ( b )  frequency spectrum. 

controlled or volume-controlled mode. Which mode was active depended on the 
volume of air between the nozzle and the flow control valve. If this volume was large 
compared to the bubble volume, then the bubble released was pressure-controlled, 
while if it was small, then the release was volume-controlled. An example is shown 
in figure 17 for Nozzle 3, where the initial amplitude of the pulse and the peak 
frequency are plotted as functions of the time interval between bubble release. In 
both cases the air supply lead contained the main volume of air between the nozzle 
and the control valve. In pressure-controlled release the lead between the nozzle and 
the control valve was 3 m long and had an ID of 4 mm. For volume-controlled release 
the lead was reduced to 0.1 m length and an ID  of 2 mm. It will be noticed that in 
the case of volume-controlled release the variation of both amplitude and frequency 
is more gradual, and there apparently exist limiting values corresponding to long 
time-intervals, that is for ‘gentle’ release of the air bubbles. 

Figure 18 (a) shows the peak frequency as a function of the release interval, for the 
six different nozzles, when the air leads were shortened as far as possible. Figure 18 (b) 
shows the normalized amplitudes, that is each amplitude divided by its least- 
observed value. This suggests that for the three largest nozzles the conditions were 
effectively volume-controlled, whereas for Nozzles 4 and 5, and possibly also 6, it was 
still partly pressure-controlled. 

The observed peak frequencies for gentle release are given in table 2 and have 
been plotted (as crosses) in figure 15. It will be seen that they lie fairly well along 
the theoretical curve. Some possible sources of error are discussed in Appendices A 
and B. 

13-2 
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FIGURE 17. Dependence of acoustical pulse parameters on air-flow rate for Nozzle 3. Peak-to- 
peak amplitude, (b )  peak frequency. -a-, Volume-controlled release ; -+-, pressure controlled 
release. 

The magnitude of the source was determined by placing the hydrophone a t  
different distances x from the nozzle. For distances exceeding 2 cm the pulse 
amplitude was found to  be strongly affected by the presence of the sidewalls, as 
expected. Near the nozzle, we might expect dipole behaviour owing to the presence 
of a pressure-release surface between the water and the air in the nozzle. By 
measurement i t  was found that the pressure amplitude behaved asymptotically like 
r-l, indicating a source with dipole moment 0.45+0.10 N/m. This value is of the 
same order of magnitude (0.34.4N/m) as the acoustical pulse from bubbles 
typically entrained by short surface waves (Updegraff 1989; Medwin & Beaky 1989) 
and by rain-drops (0.3 to 0.8 N/m; see Prosperetti et al. 1989; Longuet-Higgins 
1990). It is however less than the value of 2.3 N/m reported by Strasberg (1956) 
which may have been measured a t  a higher air flow rate. 

9. Bubble profiles 
Figure 19 shows frames from a high-speed film of bubbles emerging from Nozzle 

1 a t  the rate of about one bubble per s. The dimensionless diameter D for this nozzle 
is 1.456. 
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E'IQURE 18. (a) Acoustic frequency aa a function of release interval for the nozzles in table 2. 
( b )  Peak-to-peak amplitude (normalized) as a function of release interval (except Nozzle 6). 

To test the constancy of the flow rate we shown in figure 20 the theoretical 
sequence of bubble profiles for this nozzle at equal increments 0.2 of bubble volume, 
up to V = 3.4, together with the limiting bubble, V = 3.597. The height H of each 
bubble is plotted against its volume in figure 21. At first H increases linearly with V, 
then less rapidly on account of the greater bubble width, then finally more rapidly 
again, to compensate for the contraction in width at  the neck of the bubble. The 
result is the S-shaped curve shown in figure 2 1.  

Figure 22 shows the measured height of the bubbles (plotted points) taken from 
the photographs, as a function of the time t .  The vertical line marks the time when 
the bubble attains the theoretical maximum volume V,,,. The curve corresponds to 
the curve in figure 21 but redrawn to an equivalent timescale: dV/dt = constant = 
4.00. There is a fairly close agreement, showing that the increase in volume was 
uniform in time. 

From figure 22, the limiting volume is reached a t  a time t = -75 ms. Thereafter, 
the motion is dynamic. (A simple analogy is the falling of a rectangular block when 
it is pushed gently over the edge of a table.) The height H of the bubble continues 
to rise, but its maximum width 2y,, stays almost constant, as seen in figure 23. On 



384 M .  S.  Longuet-Higgins, B. R. Kerman and K .  Lunde 

FIGURE 19. A bubble emerging from an underwater nozzle of internal diameter 4.00 mm at a 
rate of about 1 bubble/s. Film speed : 2000 frames/s. 

the other hand the minimum width 2ymin falls steeply to zero ; see the middle curve 
in figure 23. 

We may interpret these results as follows. The motion of the water can presumably 
be described as due to a continuous distribution of sources and sinks along the 
vertical axis of the bubble cavity. Consider then the behaviour of ymin as a function 
of the time. If X(z, t )  denotes the strength of the sink per unit distance z ,  then close 
to the axis we have d 

(nY%in) = --S. (9.1) 
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FIQURE 20. = 1.456, with 

0 1 2 3 4 
V 

FIGURE 21. Ratio of the bubble height H to the nozzle diameter D as a function of the volume 
V ,  when D = 1.456 (figure 19). 



386 

1.5 

- H 1.0 
D 

0.5 

n 

M .  S. Longuet-Higgins, B. R. Kermn and K .  Lunde 

1 I I I I I I I I I  

A I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I I 1 I I 

-1.0 -0.5 0 
t 0) 

PIQURE 22. Ratio of bubble height H to nozzle diameter D as a function of time. Crosses: 
observations from figure 18. Curve: from figure 21 with constant rate dV/dt. 

So if S is a smooth function of t ,  

W k i n  N (to-t)S(z,to),  (9-2) 

where t = to denotes the instant when the neck closes. Hence ymin behaves like (to - t);, 
whereas yLin behaves linearly with t .  This is confirmed by the form of the two lower 
curves in figure 23. 

A further consequence of the model is to demonstrate the limiting form of the 
surface as t + to. For in the neighbourhood of the singularity we have for any point 
y on the free surface 

Y2 = [t,(z) -tl S /n ,  (9.3) 

where tp(z) is the time at which that fluid particle would meet, the axis. At  the 
singularity itself, choose z = 0.  Then in general 

(9.4) tp(z) = to+Az+Bz2+. . . , 
where A and B are constants. Now to is by hypothesis the earliest time at which a 
particle meets the axis, so t, 2 to for all z. Hence in (9.4) A vanishes and B is positive. 
At  the critical instant, t = t, = to and so from (9.3) to (9.4) 

y2 = (BS/K)  22. (9.5) 

Thus the limiting surface is a cone, with generators y = f (BS/n)tz. The conical form 
is verified by the observed surface profile shown in figure 19 when t = 0. 

At general times t the profile is given asymptotically by 

y2 = [ ( t0 - t )+Bz2]S /n ,  (9-6) 



The release of air bubbles f r m  an underwater nozzle 387 

- 80 - 60 - 40 - 20 0 
t (W 

FIGURE 23. Dirnensions of the bubble sequence in figure 19, plotted as functions of the time t .  
(4 2Y,,/D, ( b )  2Y,,,/D, (4 (2Y,,,/D)e. 

which is a hyperbola. The principal curvature K~ of the surface in the axial plane is 
given by 

which behaves like (to-t)-i .  The other principal curvature is 

K2 = (l/y)z-o = [ ( t o - t ) S / A ] t  (9.8) 

BS/n = 1, (9.9) 

which also behaves like (to-t)-i .  The mean curvature ( K ~ + K ~ )  remains finite only if 

that is to say if the generators to the limiting cone make angles of 45" with the axis 
of symmetry. In  other cases, surface tension forces will be important locally though 
for a short time. In figure 19 the semi-angle of the limiting cone is about 38". 

From figure 23, the bubble neck appears to pinch-off at around t = to = -0.3 ms. 
At  t = 0 and subsequently there is already evidence of a strong axial jet directed 
upwards into the bubble, and an opposite jet directed downwards into the nozzle. 
These jets presumably are required by continuity of mass to compensate for the 
inflow towards the axis. The calculation of the fluid flows in the jets, and their 
contribution towards the production of sound by the bubble, is left for a future 
investigation. 
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Appendix A. Discussion of experimental errors 
We shall consider some possible sources of error for the plotted points in figure 15. 
The frequency f was based on the simplified expression 

where p, denotes the ambient pressure at a depth of 1 m and y = 1.4. Since the depth 
was 72 cm, p ,  should be reduced by 2.75 % approximately, leading to a reduction in 
f of 1.4%. 

Secondly the assumed value of y corresponds to adiabatic conditions, and is 
strictly applicable only to large bubbles. The effect of thermal diffusion is to replace 
y in (A 1) by an equivalent quantity 9 lying between 1.4 and 1.0. In Appendix B 
below it is shown that the consequent reduction in f,  for the bubble sizes under 
consideration, is given by the approximate formula 

Af = -0.0072ft, (A 2) 

where f is measured in kHz. Thus in figure 15, when D = 0.3mm, Af/f is about 3.7 %, 
falling to 1 % when D = 6mm. 

A third kind of adjustment arises from the non-sphericity of the bubbles. A bubble 
in the form of an oblate spheroid was shown by Strasberg (1953) to have a slightly 
increased frequency Af compared to a sphere of the same volume. This is given by 

Af - -I ( e2 - l ) i  5 

- - e  a [  arctan (e2 - 1 ); 1-1, f 
where e is the ratio of the greatest to the least axis of the spheroid. When e is near 

(A 4) 
1, (A 1)  becomes 

- = &(e-  1)2 Af  
f 

very nearly. For a prolate spheroid a similar formula will apply. This correction is 
positive, and so is of opposite sign to the other two. 

Since the decay time of the acoustical pulse as shown for example in figure 16(a) 
is short compared to the period of the lowest shape oscillation, we may take as a 
representative value of e that corresponding to the limiting bubble shape at  the 
instant of breakaway. An examination of the limiting shapes in figure 10 shows that 
the maximum value of e is 1.37, occurring when D = 0.6. Thus we estimate that the 
greatest value of Af/f from this source would be about 0.5%. 

Appendix B. Thermal damping 

boundary layer of thickness 

where D, is the thermal diffusivity of the air in the bubble and w is the radian 
frequency of the oscillation. The thinness of this layer in relation to the bubble radius 

The thermal damping of a radially oscillating bubble arises mainly from a thermal 

A = (D,/2w)i,  (B 1) 

a is-expressed by the ratio X = a/A.  
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The resonant frequency o,, is given by 

- 37p0 oo - - 
a2 ’ 

where for large values of X the parameter 7 takes the adiabatic value y = 1.4. In  
general, 7 is given by 

(B 4) 
3(y-l)  sinhX-sinX -l 

X coShX-cosX 1 ’ 
7 ’ 7  [l+- 

1 +dTH 

(B 5 )  
X(sinhX+ sin X) - 2( coshX - cos X) 

= 3(y- X2(coshX- cos X) + 3(y - 1) X(sinhX- sin X) ’ 
where 

see Eller (1970). For large values of X it is easy to see that 

and hence 
1 - 3 ( ~ -  1) 

,=Y-[ x 1. 
On the other hand when X is small, we find 

and hence 7 = 1 +o(x4). (B 9) 

For air we may take D ,  = 0.2 cm2 s-l. For a bubble of radius a = 1 mm we have 
f = 3.26 kHz approximately so that A from (B 1) is about 0.022 mm. Hence X = 45.2 
and for this and all larger bubble sizes we may apply (B 7). Hence the frequency f is 
slightly reduced in the ratio 

(q/y)f = 1 -0.6(A/a) = 1-0.013. (B 10) 

Since A and a vary asp and f-* respectively, A/a varies as ff. Hence there is a 
proportional correction Af to the frequency given approximately by 

-- - -0.013 (&r, 
f 

f being measured in kHz. Alternatively we can write 

Af = -0.0072f%. 
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